USB, フローチャート, 定理, C言語
その他
ここでは, C言語に関する詳細を説明します.
C言語には, マクロと呼ばれるものがあります. マクロとは, コンパイル前にある規則に従って文字を置き換える機能を持ちます[1].
ここでは, マクロの詳しい機能の説明を行います.
タスクを管理するにあたり, 各タスクの情報を保持しておく必要があります. このような情報の塊をタスクコントロールブロック(TCB)と呼びます.
2021年12月現在, この記事で紹介している方法は古い可能性があります.
最新の方法について, microsoft 公式の以下のページか, 他の最新情報サイトをご覧ください.
WSL2上でUSBデバイスを認識させるために, VirtualHereを用いた方法を, Linux側でUSB/IPの機能を有効にする方法も含めて, 説明します.
公式リファレンスを参考しつつ, Ubuntu 上にNVIDIA GPU ドライバ, CUDA, cuDNNを入れて, tensorflow をGPUで動かす方法を, フローチャートで進めます.
線形代数にある線形写像, 基底の変換行列, 表現行列などを理解するとき, 今どこの座標系にいるのか, 基底は変わったのか, ここはベクトル空間かという悩みに会います.
本稿では, 変換行列や表現行列を図で理解することを目的にします. 行列の掛け算が点の移動であることを意識すると, 理解しやすくなります.
線形代数にある線形写像, 基底の変換行列, 表現行列などを理解するとき, 今どこの座標系にいるのか, 基底は変わったのか, ここはベクトル空間かという悩みに会います.
本稿では, 変換行列や表現行列を図で理解することを目的にします. 行列の掛け算が点の移動であることを意識すると, 理解しやすくなります.
OSがタスクの切り替えを行うためには, 定期的にOSが現在実行中のタスクの処理を中断してタスク切り替え処理を行う必要があります.
ここでは, このようなOSが定期的に割り込み処理を行う方法を説明します. また, 割り込み時の処理について説明します.
PortMacro.hで宣言されているOSコア部分の関数をここで定義します. このファイルはAVRマイコン専用です.
OSはタスクごとにメモリを動的に割り当てる必要があります(タスクが保有するメモリに関することはのちに説明します). というのも, これらのタスクはアプリケーション実行中に生成, 削除される可能性があるからです.
今回では, このメモリ管理をOSが行うことにします. OSがメモリ管理を行うことで, OS動作の理解がしやすくなるからです.
このページでは, OSによるメモリ管理をどのように実装するのか説明します.
ここでは, 実際にタスクが作成されたときのメモリの構造を示していきたいと思います. メモリでの各領域の説明, この構造によるmallocの問題を示します.
OSはタスクごとにメモリを動的に割り当てる必要があります(タスクが保有するメモリに関することはのちに説明します). というのも, これらのタスクはアプリケーション実行中に生成, 削除される可能性があるからです.
今回では, このメモリ管理をOSが行うことにします. OSがメモリ管理を行うことで, OS動作の理解がしやすくなるからです.
このページでは, OSによるメモリ管理をどのように実装するのか説明します.
ここでは, 実際にタスクが作成されたときのメモリの構造を示していきたいと思います. メモリでの各領域の説明, この構造によるmallocの問題を示します.